
Business Rule Validator

Purpose
 Unlocktrusted, high-quality data with the Business Rule Validator Framework.

Automate daily SQL-based validations, track incremental changes, and monitor rule
execution with powerful dashboards.

Severity of Data Quality

Why Data Quality Matters?

Customer Trust

Business Impact

Consequences

Leadstocustomerdissatisfaction and erodes
trust.

Poordatacausesofbusinessdecisions to fail.

Resultsinrevenuelossandrisks regulatory non-
compliance

Accuracy

Completeness
No missing information.

Uniqueness
Eliminate duplicates.

Timeliness

Validity

Consistency

Integrity

Up-to-date data.

Correct and precise values.

Reliable relationships.

Uniform across sources.

Correct format and range.

7 Key Dimensions of Data Quality

Medium

Critical

Low

High

 Continuous Monitoring
 Faster Issue Resolution
 Consistent Data Standards
Stronger Data Governance

Why Data Quality Framework?

Build trust in your data
Enable faster root cause analysis
Ensure seamless operations across
systems

Actionable Data

Structured Approach

Key Attributes

Providestimelyandactionable insights.

A repeatable method for data excellence.

Ensuresdataiscomplete,accurate, accurate, and
consistent.

Define
Business Rules

Setup
Validations

Scripts

Monitor With
Dashboards

Take
Action

DQF - Step by Step Process Why Use It?

Automate, Monitor, and Trust Your Data

📅
🔍
🕒
🧩
📊

Automated Daily Validation
SQL-Based Business Rule Checks
Incremental Data Validation
Parameterised SQL Scripts
Dashboard for Monitoring Trends

Key Features Benefits to Business Why It Matters?

✔
✔
✔
✔

Improve data quality
Build trust in business data
Catch issues early
Enable data-driven decision-making

🔔

⚡

 📈
 🤝

Validate more intelligently. Keep a closer watch. Foster trust in your
data starting today.

Data Parity Checks vs Business Rule Checks

Check Type

Purpose

Example

Key Question
Is the data identical in both systems?

Goal

Purpose

Example

Key Question

Example Validations

Comparing OrderAmount in source vs OrderAmount in the
warehouse
Checking row counts between systems

Ensure data consistency between source and target systems
(e.g., after ETL or replication)
Confirm records and attributes match exactly

OrderAmount > 0
CustomerDOB should not be in the future
Mandatory fields are populated

Know the Difference

Validate your pipelines = Validate your business.
Use both Data Parity & Business Rule checks for complete data trust.

Data Parity Checks Business Rule Checks

Validate data against predefined business logic or expectations
Ensure data meets quality thresholds for use in analysis or
operations.

Does the data comply with business policies and quality standards?

Data Parity Checks

Business Rule Checks

Consistency between systems

Field must be positive

Source vs Target match

Compliance with business expectations

Parity checks ensure trust in data pipelines
Business rules ensure trust in the data
itself

Build trust in your data
Enable faster root cause analysis
Ensure seamless operations across systems

Why Both Matters? Why It Matters?

Business Rule Validator

Know how to Setup?

Get full visibility into your data pipelines, catch mismatches early, and
build trust in your data—every day!

Start with Business Objectives
Identify and define rules for
various departments, including
customer, product, financial, and
operational data.
Build rules around 7 Dimensions
Define Rule Logic Clearly
Define Rule Severity
Define Thresholds

Define Rules

Executing Rules

Defining Validations

Monitoring Data Quality:

Null Checks
Format Checks
Range Checks
Uniqueness Checks
Referential Integrity Checks
Value Checks / Domain Constraints
Timeliness Checks
Source & Target Comparision

Tracks the number of tests passed vs
tests failed each day
Helps monitor the daily health of your
data pipelines
Identifies critical failures that need
immediate attention
Enables proactive issue resolution
before data Impacts business
Builds accountability through visible
quality metrics
Supports continuous improvement of

validation rulesover time

Easily define rules and validations—no complex setup required The
solution auto-generates the full architecture behind the scenes
Rules are executed automatically across your datasets Scalable,
repeatable, and aligned with business needs Designed for both tech
and non-tech teams to use with ease

]
}

TransactionID Unique Fail Test Script

SELECT transactionID, COUNT(*) FROM transactions GROUP BY
transactionID HAVING COUNT(*) > 1;

TransactionID Unique Pass Test Script

SELECT transactionID, COUNT(*) FROM transactions GROUP BY
transactionID HAVING COUNT(*) = 1;

{
"TEAM_NAME": "Bakehouse",
"DOMAIN_NAME": "Transactions",
"RULE_CATEGORY_NAME": "BUSINESS_RULE_CHECK",
"RULES": [{

"RULE_ID": 1,
"RULE_NAME": "unique_transactions_id_check",
"RULE_CATEGORY":"Uniqueness",
"SEVERITY":"Critical",
"FAIL_SQL": "/sql/rules_sql/unique_transactionId_fail.sql",
"PASS_SQL":"/sql/rules_sql/unique_transactionsId_pass.sql",
"TABLES_CHECKED": "sales_transactions",
"INVENTORY": "Transactions Validator Rules",
"COMMENTS": "Check if transactionID is unique.",
"PASS_THRESHOLD": 100,
"BOOKMARK_START_DATE":"2025-04-10",
"DEFAULT_BOOKMARK_START_DATE":"2025-03-20"

}
]
}

config = load_config(file_path)
result = check_business_rules(config,spark,dbutils)
print("Business Rule Validator Result:")
print(json.dumps(result, indent=4))

{
"TEAM_NAME": "DATA",
"RULE_CATEGORY_NAME": "DATA_PARITY_CHECK",
"DOMAIN_NAME":"DATA",
"RULES": [

{
"RULE_ID": 1,
"RULE_NAME": "DEMO-EMP-DATA-CHECK",
"SOURCE_SQL": "/sql/dpc_sql/source_transactions.sql",
"TARGET_SQL": "/sql/dpc_sql/target_transactions.sql",
"JOIN_DIMENSIONS": "transactionID",
"INVENTORY": "Demo Tables",
"TABLE_NAME": "Sales_transactions",
"COMMENTS": "Running only Demo tables",
"METRIC_DIMENSIONS": "transactionID",
"THRESHOLD": 95,
"RECORD_THRESHOLD":95

}

Source SQL
SELECT transactionID, customerID, quantity, unitPrice, totalPrice,
paymentMethod, cardNumber
FROM samples.bakehouse.sales_transactions

Target SQL
SELECT transactionID, customerID, quantity, unitPrice, totalPrice,
paymentMethod, cardNumber
FROM test_data.bakehouse.sales_transactions

